
Agile development 

methods



 Agile development

 The agile software development model was proposed in the mid-1990s to 

overcome the serious shortcomings of the heavy-weight models like waterfall 

model of development. 

 Agile software development is an under which requirements and solutions 

evolve through the collaborative approach to software development effort of 

self-organizing and cross-functional teams and their customer(s)/end user(s).

 It advocates adaptive planning, evolutionary development, early delivery, and 

continual improvement, and it encourages rapid and flexible response to 

change.

 Agile model is being used as an umbrella term to refer to a group of 

development processes. 

 Agile software development methods support a broad range of the software 

development life cycle. 



 Some focus on the practices (e.g., XP, pragmatic programming, agile modelling), 

 some focus on managing the flow of work (e.g.. Scrum, Kanban).

 Some support activities for requirements specification and development (e.g., FDD),

 some seek to cover the full development life cycle (e.g., DSDM, RUP).

 Agile is a term used to describe approaches to software development emphasizing

 incremental delivery,

 team collaboration, 

 continual planning, and

 continual learning, instead of trying to deliver it all at once near the end.



Agile vs Waterfall model



Agile methods



 In the agile model, the requirements are decomposed into many small 

parts that can be incrementally developed. 

 The agile model adopts an iterative approach. Each incremental part is 

developed over an iteration.

 Each iteration is intended to be small and easily manageable and 

lasting for a couple of weeks only. 

 At a time, only one increment is planned, developed, and then 

deployed at the customer site.

 No long-term plans are made. 

 The time to complete an iteration is called a time box. 

 The implication of the term time box is that the end date for an 

iteration does not change. 



 For establishing close contact with the customer during development and to gain a 

clear understanding of the domain-specific issues, each agile project usually 

includes a customer representative in the team. 

 At the end of each iteration, stakeholders and the customer representative review 

the progress made and re-evaluate the requirements.

 A distinguishing characteristics of the agile models is frequent delivery of software 

increments to the customer.

 Agile model emphasize face-to-face communication over written documents.

 It is recommended that the development team size be deliberately kept small (5-9 

people)

 It is implicit then that the agile model is suited to the development of small 

projects.

 However, if a large project is required to be developed using the agile model, it is 

likely that the collaborating teams might work at different locations.

 In this case, the different teams are needed to maintain as much daily contact as 

possible through video conferencing, telephone, e-mail, etc.



The agile manifesto has four important values:

 1. Focus should be more on individuals and interactions instead of 

processes and tools

 2. Working software is more important that comprehensive 

documentation.

 3. Customer collaboration is more vital than contract negotiation

 4. The process should respond to change rather than follow a plan 



The following important principles behind the agile model were publicized in the 

agile manifesto in 2001:

 1. Deliver customer satisfaction by delivering valuable software continuously

 2. Always accept change of requirements matter how early or late in the 

project

 3. Deliver software that works within a shorter timescale 

 4. Both developers and business professionals must work closely together daily 

throughout the duration of the project 

 5. Information is best transferred between parties in face-to-face 

conversations

 6. Motivate people to build a project by creating an environment of 

appreciation, trust, and empowerment



 Advantages: 

 Customer satisfaction by rapid, continuous delivery of useful 

software. 

 Dividing into small groups gives the team the opportunity to focus on 

the individual stages and work faster.

 Developers can devote more time to interesting tasks and their 

potential development, instead of preparing formal reports.

 The team can focus on development, testing, and collaboration. 

 People and interactions are emphasized rather than process and 

tools.

 Customers, developers and testers constantly interact with each 

other.



Disadvantages: 

 At the commencement of the project, it is difficult to accurately determine the amount 

of time and money that will be needed to complete the project due to constantly 

changing requirements.

 The team needs to have a solid foundation and comparable skilllevel.

 A high level of interaction between the client and the developers is required, which can 

take time and make the process difficult.

 Lack of attention to documentation can make it difficult for new team members to 

access needed information.

 There is a danger that the lack of project boundaries will lead to uncontrolled 

expansion, which can cause the project to never reach completion.



Agile methods

 Extreme Programming

 ASD

 Scrum

 DSDM

 FDD

 LSD

 Agile Modeling

 Agile Unified Process..



Extreme programming



Extreme programming (XP)

 it is one of the most important and widely used agile software development framework and was 

proposed by Kent Beck in 1999. 

 The name of this model reflects the fact that it recommends taking the best practices that have 

worked well in the past in program development projects to extreme levels.

 Extreme Values

 Extreme Programming is based on five core values communication, 

simplicity, 

feedback, 

respect, 

courage.

 These five fundamental values provide the foundation on which the entirety of the Extreme 

Programming paradigm is built, allowing the people involved in the project to feel confident in the 

direction the project is taking and to understand their personal feedback and insight.



 The XP process

 4 activities

Planning

Design 

Coding

Testing





 The XP Process

 Extreme Programming uses an object-oriented approach as its preferred 
development paradigm and encompasses a set of rules and practices that 
occur within the context of four framework activities: planning, design, 
coding, and testing. 

 Extreme Planning: The first phase of Extreme Programming life cycle is 
planning. 

 The planning activity begins with listening a requirements, gathering 
activity that enables the technical members of the XP team to 
understand the business context for the software and to get a broad feel 
for required output and major features and functionality.





 Listening leads to the creation of a set of user stories that describe 
required output, features, and functionality for software to be built. 

 Each story (similar to use cases) is written by the customer and is 
placed on an index card. 

 The customer assigns a value (i.e., a priority) to the story based on 
the overall business value of the feature or function.

 1. All stories will be implemented immediately (within a few weeks),

 2. The stories with highest value will be moved up in the schedule 
and implemented first

 3. The riskiest stories will be moved up in the schedule and 
implemented first.



 Extreme Design: 

 XP design rigorously follows the KIS (keep it simple) principle.

 A simple design is always preferred over a more complex 

representation.

 In addition, the design provides implementation guidance for a story 

as it is written-nothing less, nothing more. 

 The design of extra functionality (because the developer assumes it 

will be required later) is discouraged.

 XP encourages the use of CRC (class-responsibility-collaborator) cards 

to identify and organize the object-oriented classes that are relevant 

to the current software increment.



 If a difficult design problem is encountered as part of the design of a story. 

XP recommends the immediate creation of an operational prototype, called 

a spike solution, of that portion of the design.

 The spike solution is implemented and evaluated. The objective is to lower 

risk when true implementation starts and to validate the original estimates 

for the story containing the design problem.

 XP encourages refactoring continuously as soon as potential code 

improvements are found.

 Refactoring is a disciplined way to clean up code [and modify/simplify the 

internal design] that minimizes the chances of introducing bugs. 

 This keeps the code simple and maintainable.



 Extreme Coding. 

 After stories are developed and preliminary design work is done, the team does not move 

to code, but rather develops a series of unit tests that will exercise each of the stories 

that is to be included in the current release (software increment). 

 Once the unit test has been created, the developer is better able to focus on what must 

be implemented to pass the test. 

 Nothing extraneous is added. Once the code is complete, it can be unit-tested 

immediately, thereby providing instantaneous feedback to the developers.

 A key concept during the coding activity is pair programming. 

 XP recommends that two people work together at one computer workstation to create 

code for a story.

 In practice, each person takes on a slightly different role. One types in code (think about 

the coding details) while the other reviews the code as it is typed in (ensures that coding 

standards).

 The two programmers switch their roles every hour or so.



 Extreme Testing. 

 As the individual unit tests are organized into a universal testing suite, integration and 

validation testing of the system can occur on a daily basis.

 This provides the XP team with a continual indication of progress and also can raise warning 

flags early if things go wrong.

 XP acceptance tests, also called customer tests, are specified by the customer and focus on 

overall system features and functionality that are visible and reviewable by the customer.

 Acceptance tests are derived from user stories that have been implemented as part of a 

software release.



Advantageous of XP

 Extreme Programming allows software development companies to 

save costs and time required for project realization. XP eliminates 

unproductive activities to reduce costs and frustration of everyone 

involved. It allows developers to focus on coding.

 Extreme Programming reduces the risks related to programming and 

project failure. XP ensures that the client gets exactly what he wants.

 Simplicity is a core value of Extreme Programming projects. It creates 

extremely simple code that can be improved at any moment.

 In Extreme Programming, the whole process is visible and 

accountable. The developers make concrete commitments about what 

they will accomplish and show concrete progress.



 Constant feedback demonstrates the software early and often and it enables the 

developers to listen carefully to the customers and to make any changes needed. Sprints 

help the team to move in the right direction. 

 Extreme Programming creates working software faster. Regulartesting at the development 

stage ensures detection of all bugs, andthe use of customer approved validation tests to 

determine thesuccessful completion of a coding block ensures implementation ofonly what 

the customer wants and nothing more.

 Extreme Programming helps increase employee satisfaction and retention. Extreme 

Programming is a value-driven approach that sets fixed work time, with little scope for 

overtime. The breakdown of project scope into subcomponents and the constant customer 

feedback prevents accumulation of much work to be completed before a tight deadline.

 Extreme Programming promotes teamwork. Everyone is part of the team. Team members 

work together on everything from requirements to code. Developers work in pairs and 

never feel alone or forgotten.



Disadvantages of XP

• Code overcomes design. The focus of XP is definitely the code rather than the design. The 

design is what sells the application, so the customer could be unhappy with the end product if 

the design is not good enough. Sometimes this can result in failing to implement the software 

requirements fully.

• Location. XP projects are difficult to implement when the customer is away from the 

developmental team. Typically the XP interactions are successful when the team members 

meet face to face. Therefore applying extreme programming limits the range of projects.

• Lack of documentation. The constant changes cannot be documented properly. Thus, there 

are high risks of unexpected failures that cannot be tracked. Even when bugs are fixed, 

without accurate documentation it is possible that the same errors can recur.

• Stress. There is a lot of pressure working with tight deadlines. If the developers have high 

stress levels completing tasks on time, they are more likely to make mistakes while coding. 

Subsequently, software quality could be reduced due to the scheduling.


